String manipulation
in C#

Lecture 9

CS 638 Web Programming

Lecture overview W

a String formatting
a Stringbuilder and string methods
o Regular expressions

CS 638 Web Programming — Estan & Kivolowitz

String formatting @

0 String.Format (formatstring, arguments)
o Also supported by Console.WriteLine () and others
o Format string contains groups of the form
{index[,alignment] [:codes] }
o Index of first argument after format string is O

a Alignment specifies number of characters to use (padded
with spaces at left if positive, at right if negative)

a Codes are interpreted based on the value’s type
a Alignment and codes can be omitted
o Relies extensively on objects’ ToString() method

CS 638 Web Programming — Estan & Kivolowitz

Some formatting codes @

o For numbers n — use comas to separate thousands,e
— scientific notation, x and X — hexadecimal, 0
indicates padding with Os, # indicates position of digits
(see demo4)

0 For dates and times: d and D — short/long date, t/T —
short/long time, mm — a minutes, MM — month as
number, MMM — month as 3 letter code, MMMM —
month name

0 g stands for the generic default format for all types

0 For more details on formatting see

CS 638 Web Programming — Estan & Kivolowitz

String manipulation methods @

o Some methods of the String class

o Trim() removes whitespaces from both ends of string

0 Split(char[] separators) splits string into an array
of substrings separated by the given characters

0 SubString(int index, int length) extracts the
substring of given length from the given position

0 IndexOf (string substring, int startIndex)
finds first occurrence of given substring after given index

0 LastIndexOf (string substring) finds last index
where substring occurs

0 Replace(string oldvValue, string newValue)

CS 638 Web Programming — Estan & Kivolowitz

StringBuilder @

o Strings are immutable objects
o Whenever a new string created, it uses a new
memory location

o This happens whenever strings are concatenated,
trimmed, characters replaced, etc.

o Inefficient if a large string built by many small changes
0 The StringBuilder class allows more efficient in-
place manipulation

o Appending strings, replacing substrings and characters,
removing substrings, etc.

CS 638 Web Programming — Estan & Kivolowitz




Regular expressions

o A regular expression (regex) is a compact way of
representing a certain type of pattern
o For most patterns, multiple equivalent regexes exist
o Fundamental operation: regex matching — deciding
if a given input string can be mapped to the pattern
o Studied by complexity theory — simple to match
o Many applications, among them
o Used by compilers as a first step of program analysis
o Various popular Unix commands such as grep
a In web programming mostly for validating user input

CS 638 Web Programming — Estan & Kivolowitz

Example regular expressions 1 @

CS 638 Web Programming — Estan & Kivolowitz

Example regular expressions 2 @

foo|bar “foo”, "bart” “ooba”

Example regular expressions 3 @

“a{2,6}$ “aaaa”, “aa” “a”,“”, 6 “aaaaaaaaaa”

CS 638 Web Programming — Estan & Kivolowitz

CS 638 Web Programming — Estan & Kivolowitz

Regular expressions in C# @

o Implemented by the class
System.Text .RegularExpressions.Regex
o Constructor accepts a st_ring describing the regular
expression that is “compiled” to a representation
used for efficient matching
o Important methods
0 IsMatch(string input) checks if input string matches
0 Replace(string input, string replacement)
replaces all matches of the regular expression in input
0 Split(string input) splits input interpreting each
match of the regex as a separator
o See demo4 for examples on how to use regexes

CS 638 Web Programming — Estan & Kivolowitz

C# programming

Lectures 6 - 9

CS 638 Web Programming




Differences between @
C# and Java ur

o Application structure

o Inheritance and polymorphism

o Value types and parameter passing
o Syntax changes and extensions

o For more detailed comparison that goes
beyond the things we covered in class see

CS 638 Web Programming — Estan & Kivolowitz

Application structure @

o Namespaces similar to Java packages, but
decoupled from how source code is structured

o Multiple classes can be defined in a single file, name
of classes unrelated to file name

o C# partial classes — a class defined in multiple files
o Assemblies similar to jar files
o C#'s keyword internal is like Java's protected

— grants access to others from same assembly
o In C# protected grants access to derived classes

CS 638 Web Programming — Estan & Kivolowitz

Inheritance and polymorphism @

a In C# you must explicitly use the virtual keyword for
methods overridden in derived classes (in Java
methods are virtual by default)

o By default C# methods are like final methods in Java

o Derived class can still specify new method, but it does not
lead to polymorphic behavior

o Operator overloading supported in C#, not in Java

o C#replaces the implements and extends
keywords with :

o C# refers to the base class as base, not super

CS 638 Web Programming — Estan & Kivolowitz

Value types @

o C# has structs which are value types
0 new is optional (no memory allocation, calls constructor)
o Generics in C# can also use value types (not just
classes as in Java)
o Parameter passing
o Java passes all parameters by value
0 What does it mean to pass a reference type by value?

o C# allows passing by reference and output parameters for
both value and reference types

0 Boolean variables are of type bool, not boolean

CS 638 Web Programming — Estan & Kivolowitz

Syntax changes and @
extensions

o The foreach loop has different syntax
0 InC# foreach(int i in numbers)
0 InJava for (int 1i:numbers)
o Changes to switch statement,
a Can use string literals for case clauses
a Fall-through between cases is forbidden
o C# objects can have properties (use of accessors)
o C# has delegates
o C# has keywords const and readonly

CS 638 Web Programming — Estan & Kivolowitz

Concepts @

a Event-driven programming
o Extending applications with new event handlers
o Debugging — breakpoints, stepping through
program, watches, assertions

o Using language features that make it easier
for the compiler to catch mistakes
o Enums, const, readonly

o Operator overloading can help or harm

a Naming conventions (for interface names)

CS 638 Web Programming — Estan & Kivolowitz




